
ANNUAL REPORT 2006
Meeting date: June 15, 2006

Sami Vapalahti (Ph.D. Student)*, 

Prof. Humberto Castillejos**, Prof. Andres Acosta**, 
Prof, Brian G. Thomas*** & Prof. Seppo Louhenkilpi*

*Laboratory of Metallurgy, Helsinki University of Technology, Finland
**Laboratory of Process Metallurgy, CINVESTAV, Mexico

***Department of Mechanical & Industrial Engineering, University of Illinois
at Urbana-Champaign

Modeling Of CC Secondary Cooling 

Sprays: An Experimental Study

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • S. Vapalahti / BG Thomas 2

Acknowledgements

• Continuous Casting Consortium Members 
(Nucor, Postech, LWB Refractories, Algoma, Corus, 
Labein, Mittal Riverdale, Baosteel, Steel Dynamics)

• National Science Foundation
– DMI 04-04-23794 (Strip);

– DMI 05-28668 (Sensor); GOALI DMI 05-00453 (Online) 

• National Center for Supercomputing Applications 
(NCSA) at UIUC

• Fluent, Inc., CFX, UIFLOW (P. Vanka)

• Other Graduate students, especially J. Sengupta



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • S. Vapalahti / BG Thomas 3

Introduction

• Motivation

• Goals

• Unsteady state measurements

• Steady state measurements

• Surface oxidation

• Conclusions

• Future work

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • S. Vapalahti / BG Thomas 4

Motivation

• Used mathematical models fundamental and 
accurate boundary conditions crucial

• Literature information on air-mist insufficient 
for accurate modeling
– Water quality (used plant (oil, powder) vs. dwell 

water) 
– Surface roughness (as-cast vs. cut surface)
– Spray characteristics (flow rate, impact pressure, 

droplet size, droplet velocity, etc.)
– Time scales

• Information very valuable also for basic 
understanding at plant about prevailing 
conditions in the caster
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Earlier Work At Cinvestav

Laboratory measurements, heat transfer modeling and plant results 
indicate that secondary cooling in thin slab casting occurs under the 
transition boiling regime. The corresponding heat transfer rate is larger 
than that obtained under the film boiling regime, the prevailing regime in 
conventional slab casting.

Above 4.2 m/min the mold heat flux reaches a limit and the heat 
extraction bestowed by the secondary cooling system can not maintain the 
same growth rate of the slab shell, despite increases in water flow rate.

In a recent laboratory work, we found that an increase in the nozzle air 
pressure from 200 to 250 kPa, improved the heat flux for a given water 
impact density. The study indicates that a higher air pressure produces 
finer droplets which have a higher cooling efficiency.
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Earlier Work At Cinvestav

• Initial (surface) temperature has a noticeable effect 
on heat removal rate (Castillejos et. al. 2005):
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Earlier Work At Cinvestav

• Mathematical modelling based on experiments (Castillejos et. al. 2005): 
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Earlier Work At Cinvestav

• Mathematical modelling based on experiments (Castillejos et. al. 2005):

• Conclusions for thin slab casting (Castillejos et. al. 2005):
– Casting speed could be increased and previously occurred bulgings could 

be avoided without modifications to the caster with only changing cooling 
praxis
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Goals

• Find a method to predict heat transfer coefficients for 
air-mist

• Measure efficiency of typical nozzles (e.g. used by 
Nucor Decatur) by unsteady state measurements

• Perform unsteady and steady state experiments and 
compare results with earlier results obtained by Prof. 
Castillejos and Prof. Acosta at CINVESTAV

• Find the effect of surface roughness and water 
quality on heat transfer characteristics of air-mist

• Find time dependencies in cooling under steady state 
conditions
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Nozzle Characterisation

• Currently only available characterisation is ”foot print”
• Future work will have to include pressure maps and 

droplet size and velocity analysis
• Is used for determining thermocouple locations and 

flow rates basis for current heat transfer boundary 
conditions
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Foot Prints
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Foot Prints
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• To be able to use the results from measurements it is 
necessary to understand the behavior of the nozzle 
when flows are changed and that is why operating 
diagram of each researched nozzle must be obtained

• A/W ratio is a good measure

Operation Diagram
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Unsteady State Measurements

• Heating actual as-cast steel samples 
from Nucor Decatur in a furnace to a 
desired temperature and cooling them 
down to room temperature under 
selected spray conditions

• Both as-cast and smooth surfaces

• 1D inverse model used for calculating 
heat fluxes at the surface from 
measured temperatures
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Unsteady State Equipment
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Unsteady State Equipment
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Unsteady State Measurements

The plates will be produced and measured for actual locations of the 
thermocouples and the thermocouples are attached
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Sample Surfaces
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Materials Properties And Cooling 
Curves

Materials Properties Effect on Cooling Curves
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Cooling Curves Plate 4
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Surface Roughness
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Surface Roughness
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Surface Roughness
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Cooling Curves Plate 6 (2)
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Repeatability
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Cooling Curves Plate 7 (2)
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Steel Grade
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Steady State Equipment
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Steady State Equipment

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • S. Vapalahti / BG Thomas 30

Steady State Measurements

Controller DAQ

Temperatures

Induction Coil

Voltage
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Steady State Measurements

• Works with heat flux values < 5 MW/m²

• Problems keeping surface hot under 
high cooling rate -> thinner sample

• Delayed by electric grounding and 
signal noise promblems and equipment 
delivery

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • S. Vapalahti / BG Thomas 32

Oxidation

• Oxidation was investigated 
using an intense xenon strobe 
light with a high shutter speed 
camera during air cooling and 
air-mist cooling

• Oxilayers peeled of by the 
cooling were measured

• Thickness af the sample plates 
was measured after the trials
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Oxidation

1 2

3 4

Stainless steel surface 
during air cooling

Stainless steel surface 
during spray cooling. Time 
scale (1-4) ~3 secs.
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Oxidation

• Oxide layer thickness is a function of the time in 
furnace but also the cooling rate since in spray 
cooling the plate has no time to oxide more

• Average oxide layer thickness in boron steel in the 
experiments is 0.72 mm at 1300°C and 0.36 mm at 
1000°C based on measurement of removed oxide 
from samples and plate 3 where the thermocouples 
were exposed after two experiments at ~ 1300°C

• After spray cooling there is rarely any oxide left on 
the surface of the sample with used boron or 
stainless steel grades but more often with boron steel
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Conclusions

• Unsteady state
– Results show used nozzles much more efficient that previously 

tested pneumatic and hydraulic nozzles
– Reproduceability not very good with current experimental setup -> 

small effects impossible to detect
– Comparison results for steady state

• Steady State
– Promising results although break through not yet done
– Currently 8 mm sample diameter with 1.5 mm thickness
– Work will continue by graduate student during summer and under 

this project in September
• Oxidation

– Results indicate it is not important to take into account oxide build 
up in secondary cooling zone with used steel grades

– Stainless steel oxide ”explosive” and thinner than boron steel oxide
– Thickness is a function of furnace holding time and cooling rate
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Future Work

• Improve data aquisition by adding accuracy 
and aquired signals

• Finalize steady state measurement procedure 
as accurate and efficient as possible

• Compare results with unsteady state 
measurements

• Test different water chemistries using steady 
state

• Build a mathematical model to describe 
cooling rate of air-mist

• Characterize sprays by pressure foot print, 
droplet size distribution, and velocities


